
Organisms spanning great phylogenetic diversity and a wide
range of body sizes swim along a helical path. Helical
swimming has been observed in unicellular swimmers with
cilia (e.g. Paramecium caudatum, Loxodes rostrum, Jennings,
1901) and flagella (e.g. Tubularia croceaspermatozoa, Miller
and Brokaw, 1970; Chlamydomonas reinhardtii, Boscov and
Feinleib, 1979). Many marine invertebrate larvae use cilia to
swim helically (e.g. chordate lancelet larvae, Stokes, 1997;
sponge planula, Bergquist et al., 1970; mollusc veligers,
Jonsson et al., 1991; echinoderm doliolaria, Mladenov and
Chia, 1983), and ascidian larvae follow a helical path by
propelling themselves by tail undulation (Grave, 1920). Helical
swimming also occurs in vertebrates that swim by undulating
their bodies but have undeveloped or impaired spatial
orientation. For example, early-stage larvae of the frog
Xenopus laevisare thought to swim helically because they have
undeveloped vestibular organs, and late-stage larvae can be
made to swim helically by ablating their vestibular organ
(Roberts et al., 2000). Ullén et al. (Ullén et al., 1995) caused
adult lamprey Lampetra fluviatilis to swim helically by

ablating their vestibular organ, thereby demonstrating that at
least some vertebrates swim helically when they lack the
sensory feedback necessary to control body rotation.

To move along a curvilinear trajectory such as a helix, an
organism must rotate its body as it moves forward (see
Crenshaw et al., 2000). An organism’s weight, buoyancy and
swimming hydrodynamics have all been hypothesized to
generate the moments (i.e. torques) for rotation and the forces
for forward movement (Young, 1995). Moments can be
generated by hydrodynamics from asymmetries either in the
body shape of swimmers or in the motion of their propulsive
structures. Such mechanisms appear to play a role in the helical
swimming of Tubularia croceaspermatozoa, which beat their
flagella with asymmetrical undulations (Miller and Brokaw,
1970). Jennings (Jennings, 1901) suggested that helical
swimming in many microorganisms is generated by
asymmetrical body shapes. Knight-Jones (Knight-Jones, 1954)
implied a hydrodynamic mechanism for body rotation when he
reported that metachronal waves in ciliary beating are directed
at an oblique angle to the long axis of the body in a diversity
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A great diversity of unicellular and invertebrate
organisms swim along a helical path, but it is not well
understood how asymmetries in the body shape or the
movement of propulsive structures affect a swimmer’s
ability to perform the body rotation necessary to move
helically. The present study found no significant
asymmetries in the body shape of ascidian larvae
(Distaplia occidentalis) that could operate to rotate the
body during swimming. By recording the three-
dimensional movement of free-swimming larvae, it was
found that the tail possessed two bends, each with constant
curvature along their length. As these bends traveled
posteriorly, the amplitude of curvature changes was
significantly greater in the concave-left direction than in
the concave-right direction. In addition to this asymmetry,
the tail oscillated at an oblique angle to the midline of the
trunk. These asymmetries generated a yawing moment
that rotated the body in the counterclockwise direction
from a dorsal view, according to calculations from

hydrodynamic theory. The tails of resting larvae were
bent in the concave-left direction with a curvature
statistically indistinguishable from the median value for
tail curvature during swimming. The flexural stiffness of
the tails of larvae, measured in three-point bending, may
be great enough to allow the resting curvature of the tail
to have an effect on the symmetry of kinematics. This
work suggests that asymmetrical tail motion is an
important mechanism for generating a yawing moment
during swimming in ascidian larvae and that these
asymmetries may be caused by the tail’s bent shape. Since
helical motion requires that moments also be generated in
the pitching or rolling directions, other mechanisms are
required to explain fully how ascidian larvae generate and
control helical swimming.
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Distaplia occidentalis.
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of metazoans that swim helically. Although these studies
suggest a variety of mechanisms for helical swimming, two
fundamental questions remain untested: (i) do morphological
and kinematic asymmetries generate moments that act to rotate
the body during helical swimming, and (ii) how are kinematic
asymmetries generated?

The present study addresses these questions by testing
hypotheses about the mechanics of helical swimming in
ascidian larvae. Swimming plays a brief but important role in
the ecology of this relatively large group of urochordates
(ascidians include around 3000 species; Jeffery, 1997). Larvae
disperse in the ocean for a duration ranging from a few
minutes (e.g. Botrylloidessp., Worcester, 1994) to 10 days
(e.g. Ascidia mentula, Svane, 1984) and do not feed. After this
dispersal phase, larvae metamorphose into a sessile juvenile
form. Therefore, helical swimming in the larval phase is the
only opportunity for locomotion in the life cycle of an
individual.

Both morphological and kinematic asymmetries have been
hypothesized to enable ascidian larvae to swim along a
helical trajectory. Grave (Grave, 1920) suggested that the
subtle depression on the left side of the trunk of Aplidium
constellatumlarvae contributes to the generation of their
right-handed (i.e. clockwise when viewed from the rear)
helical trajectory. The tail fin of Aplidium constellaumis
thought to twist during swimming undulations and thereby
cause the body to rotate (Mast, 1921). The tail of many
species has been observed to bend to one side of the body
when at rest (Berrill, 1950). If the flexural stiffness of the
larval tail is substantial, then this asymmetry in shape could
cause an asymmetry in motion that may help to rotate the
body. Furthermore, if the tail stiffness resists tail bending
more in one direction than the other, then further kinematic
asymmetry should result.

Ascidian larvae are well suited for this investigation because
their tail motion when freely swimming is easier to observe
than the patterns of movement by the fields of cilia used by
many other helical swimmers (e.g. bivalve veligers, Jonsson
et al., 1991; ciliated metazoans, Knight-Jones, 1954;
microorganisms, Jennings, 1901). The study species, Distaplia
occidentalis, is abundant in Northern California, USA, and is
reproductively active for a long period during the summer and
autumn. The larvae of Distaplia occidentalis possess a visibly
dark ocellus and a light trunk, which makes it possible to
measure the body orientation in three dimensions from video
sequences. Furthermore, larvae of D. occidentalisare relatively
large (mean body length 3.50 mm), so tail stiffness could be
measured more easily than in smaller larvae.

By measuring the body shape of resting larvae, the flexural
stiffness of the tail and the motion of the body during
swimming, I tested the following hypotheses: (i) that the trunk
and tail fin possess morphological asymmetries; (ii) that the tail
undulates with an asymmetrical kinematic pattern; (iii) that the
flexural stiffness provides greater resistance to deflection in
one direction than the other; and (iv) that kinematic
asymmetries generate moments that act to rotate the body.

Materials and methods
In the months of August and September in 1999, Distaplia

occidentalis (Bancroft) were collected from floating docks at
the Spud Point Marina in Bodega Bay, CA, USA, in water that
was between 11 and 16 °C. Colonies were transported within
2 h to a cold room at the University of California, Berkeley,
CA, USA, where they were held at temperatures between 13
and 17 °C. To stimulate release of larvae, colonies were
exposed to bright artificial light after being kept in darkness
overnight (Cloney, 1987). Released larvae were placed in an
aquarium that was cooled with a water bath at 15 °C. Within
2 h of release, one of three experiments was conducted on an
individual larva. A larva was (i) videotaped while swimming,
(ii) photographed while resting or (iii) used for measurements
of tail flexural stiffness. All experiments were conducted
within 4 days of collection of the adult colony.

Morphometrics

Digital still images of resting larvae from dorsal and lateral
views were captured by computer (7100/80 PowerPC
Macintosh with Rasterops 24XLTV frame grabber) using a
video camera (Sony, DXC-151A) mounted on a dissecting
microscope (Nikon, SMZ-10A). Images of the body shape
were measured using NIH Image software (version 1.62) on an
Apple Macintosh G3 computer. These images had a spatial
resolution of 640×480 pixels, with each pixel representing a
square with sides measuring approximately 7µm.

All morphometric measurements were made relative to the
body’s midline. In the trunk, this midline was defined as the
axis running through the center of intersection of the trunk with
the tail and the center of the three adhesive papillae at the
anterior end of the trunk (Fig. 1). To test for dorso-ventral
morphological asymmetries, the distance between the dorsal
margin of the trunk and the midline was compared with the
distance between the ventral margin and the midline at 20
equally spaced longitudinal positions. At each of these trunk
positions, the distance between the right margin of the trunk
and the midline was compared with the distance between the
left margin and the midline as a measure of bilateral symmetry
(Fig. 2).

The larval tail is composed of a cellular portion, containing
the notochord, muscle and nerve cells, and the extracellular tail
fin made of tunic tissue (Burighel and Cloney, 1997). The
midline of the tail at each longitudinal position was centered
between the left, right, dorsal and ventral margins of the
cellular region. To test for dorso-ventral asymmetries in the tail
fin, the distance from the midline to the dorsal margin was
compared with the distance from the midline to the ventral
margin at 10 equally spaced longitudinal positions.

The curvature of the tail of resting larvae was measured to
determine whether larvae are consistently bent towards the
same side of the body. Resting curvature was measured as the
mean value of discrete measures of curvature (see Fig. 1B) at
all tail positions. The present study considers the side of the
tail with the nerve cord to be in the dorsal direction (as in
Burighel and Cloney, 1997) for the trunk and tail (this is not
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always the convention for ascidian larvae; e.g. Cavey and
Cloney, 1972).

Kinematics

Swimming larvae were filmed simultaneously with two
digital high-speed video cameras recording at 500 frames s−1

(Redlake PCI Mono/100S Motionscope, 320×280 pixels per
camera, each equipped with a 50 mm macro lens (in the
arrangement described by Crenshaw, 1991). The cameras were
directed in perpendicular directions and both were focused on
a small volume (1 cm3) of water in the center of an aquarium
(3 cm×3 cm×6 cm). Larvae were illuminated from the side with
two fiber-optic lamps (Cole Parmer 9741-50). The aquarium
was built with a separate outer chamber into which chilled
water flowed from a water bath equipped with a thermostat
(VWR Scientific, 1166) to maintain a water temperature of
approximately 15 °C. Larvae generally swam in the vertical
direction and passively sank to the bottom of the tank when
resting. As in most species of ascidian larvae, swimming could
be stimulated by briefly dimming the illuminators (the ‘shadow
response’; Grave, 1941). Once initiated, swimming behavior
continued with the lights on and ceased after larvae arrived at
the water’s surface.

The three-dimensional swimming movements of the trunk
and tail were acquired and analyzed with custom-designed
computer programs. Since the trunk was assumed to be rigid,
its motion was described by changes in the position of a point
in the center of the three anterior papillae and a second point
at the intersection of the trunk and tail (Fig. 1B). The
coordinates of both points were manually selected with an
Apple PowerMac G3 with NIH Image software (version 1.62).
Using the same procedure, the movement of the ocellus was
tracked to later reconstruct the body axes in the analysis stage.
Since larvae were the brightest figures (i.e. the pixels with the
lowest values) in the video frames, the silhouette of the tail
could be traced automatically. The midline of the tail was
found by ‘dissolving’ its silhouette (see Russ, 1999) to a line
with a width of 1 pixel with a custom-designed macro in NIH
Image. A second macro found between 5 and 20 coordinate
pairs (X and Z) along the midline’s length in one video frame,
then referred to the corresponding video frame recorded by the
other camera to find matching coordinates in the third
dimension (Y). This acquisition of three-dimensional
coordinates was completed for every frame of video for a
period of approximately 1 s (500 video frames) in sequences
in which larvae appeared to swim vertically along a straight
helical trajectory.

The tail kinematics were analyzed in four stages: (i) the
coordinates of unequal number and spacing in the camera’s
frame of reference were transformed into 20 evenly spaced
points in the frame of reference of the body, (ii) the shape of
the midline of the tail was described using the angle between
the trunk and the tail (trunk angle) and a curvature function for
each instant of time, (iii) changes in tail midline shape and
trunk angle with time were described and (iv) asymmetries in
this kinematic pattern were tested. These four stages are
described below in detail.

Stage 1: transforming midline coordinates into evenly spaced
points in the body’s frame of reference

The first stage in the kinematic analysis transformed the
variable number of coordinates describing the tail midline
(described above) into 20 evenly spaced points for each instant
of time. Programs for this analysis were written with Matlab
software (version 5.2, Mathworks). The positions of points
along the length of the tail were calculated by measuring the
sum of the distances between points. To describe the
relationships between tail position and each of the three spatial
dimensions with a continuous expression, coefficients
describing a fifth-order polynomial were found by least-
squares approximation for each spatial dimension.
Polynomials of the fifth order were the lowest order that
described the shape of the tail well. Equidistant coordinate
points were found by solving these functions for 20 tail
positions at equal intervals. The result was a description of 19
tail segments of equal length in three-dimensional space. To
ensure against operator error and smoothing errors, two-
dimensional projections of these coordinates were plotted back
on the original video frames for verification. Swimming

Fig. 1. Typical shape of the resting larval body. (A) Silhouettes of
lateral and dorsal views of a larva, traced from video images. The tail
fin is shown in white. The concave-left bend in the tail of this
individual can be seen from the dorsal view. (B) The midline
measured from the dorsal view of the same individual. Trunk angle
(θ) is the angle between the trunk’s midline and the first anterior
segment of the tail. Curvature for a tail segment (κ) is equal to the
angular flexion, ∆φ, between the neighboring segments, divided by
the length of the segment, ∆s (Thomas and Finney, 1980).
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Fig. 2. The symmetry of larval tails and trunks. All measurements are relative to the midline axis and are expressed in terms of body length
(see Materials and methods). The lower plots in A and B give the mean values for the surface of the trunk and tail (vertical dashes). Dotted
lines connect body positions along the longitudinal axis from the lower image with their corresponding position in the box plot data shown
above. The upper plots show the median and quartiles of data on opposite sides of the midline (N=18). (A) In the lower graph, the average
shape of the larval body from a dorsal view is traced with vertical tick marks. The thickness of the cellular portion of the tail is visible in the
tail region. The distance between the midline and the left margin is statistically indistinguishable from the distance between the midline and
the right margin at all antero-posterior positions. (B) In the lower graph, the shape of the average larva as viewed from a lateral perspective is
traced with vertical tick marks. In the tail region, the profile of the tail fin is traced. No significant differences were found between the
distances of the dorsal (filled columns) and ventral (open columns) margins from the midline at any position along the length of the body.
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sequences were discarded if coordinate points were not aligned
with the midline of the body. This criterion combined with the
relatively brief duration that individuals remained within view
of both cameras restricted the analysis to a single tail-beat
cycle per individual.

Using methodology described by Craig (Craig, 1989), the
body’s frame of reference was defined for larvae using the
three coordinate points describing the trunk’s position. The
origin of the body’s coordinate system was defined as the
intersection point between the tail and trunk, and the anterio-
posterior axis was defined by the line between this point and
the center of the papillae at the anterior end of the trunk. Using
the position of the ocellus within the trunk measured in resting
individuals, the lateral and dorso-ventral axes were
reconstructed. Tail coordinates in the camera’s frame of
reference were then transformed into coordinates relative to the
body’s frame of reference.

Stage 2: describing tail midline shape

By observing the swimming of ascidian larvae, it was
apparent that conventional methods for kinematic description
would not suffice. The classical kinematic analyses for fish
swimming (e.g. Lighthill, 1975; Webb et al., 1984) were
insufficient because (i) no simple axis of progression (e.g. the
straight path of a swimming fish; McHenry et al., 1995) exists
for swimmers following a three-dimensional curvilinear
trajectory, (ii) the curvature of the tail was so great that it
could not be described by a function with a single
independent variable in Cartesian space and (iii) symmetrical
kinematics could not be assumed. Therefore, coordinates
describing tail shape in single video frames were described
by the angle between the trunk and the tail (trunk angle) and
curvature (κ) as a function of tail position. For these
measurements, the discrete form of curvature was used (see
Fig. 1B).

Brokaw (Brokaw, 1965) found that the shape of the
flagellum of bull spermatozoa during swimming was better
described by a series of adjoining semi-circles than by
conventional kinematic equations (e.g. Gray and Hancock,
1955). As is characteristic of circles, these semi-circular
portions of the tail were constant in curvature along their
length. The tail shape of D. occidentalismay also be described
by bends of constant curvature, one bent to the right and
another bent to the left of the body (Fig. 3A,C,E). Therefore,
tail shape at a single instant of time may be described by one
concave-left curvature (κCL), one concave-right curvature
(κCR) and the position along the body’s length (s) where the
semi-circles intersect, which is the inflection point (si). The
following equation shows how curvature varies as a function
of tail position:

This expression means that, in the first half of a tail beat
(t<0.5), tail curvature, κ(s,t), anterior to the inflection point

(s<si) is equal to κCR, but is equal to κCL posterior to the
inflection point (s>si). In the second half of the tail beat
(t>0.5), tail curvature equals κCL anterior to (s<si) and κCR

posterior to (s>si) the inflection point. This pattern of
curvature is illustrated for two instants of time in Fig. 3, in
which concave-right curvatures are positive in sign and
concave-left curvatures are negative. Trunk angle (θ), a
variable that completed the description of body shape, is the
angle between the trunk’s midline and the first anterior
segment of the tail (Fig. 1B).

The following equations were used to translate the midline
shape variables (θ, κCL, κCR and si) into a series of coordinate
points that could be compared with the data:

where ∆s is tail segment length and n is the tail segment
number. These equations calculate the position of the posterior
end of segment n. These relationships show that the position
of the end of the first tail segment (n=1) is dependent on the
trunk angle θ. The curvature at the intersection of each segment
pair (sn) affects the position of all segments posterior to it. By
trial and error, values for θ, then anterior curvature (κCL or
κCR), then the inflection point (si) and then posterior curvature
(κCL or κCR) were selected on the basis of the visual closeness
of fit between the curve that they described and the data. Fig. 3
illustrates the midline data and the curves that describe their
shape.

Stage 3: measuring shape changes over time

After determining values for the midline shape variables (θ,
κCL, κCR and si) for each instant in time at 2 ms intervals, the
next objective was to describe how these variables changed
with time. An equation describing how each variable changed
with time was created (see Results), and the values for
parameters in these equations were found using a non-linear
least-squares algorithm (Matlab version 5.2, Mathworks).
Although the exact form of these equations could not be
predicted, their parameters were apparent from qualitative
observation of the swimming motion. The inflection point si

was expected to travel down the tail at some wave speed ε.
Trunk angle θ appeared to vary periodically with time and was
therefore expected to oscillate above and below a value β with
an amplitude equal to αθ. Since tail curvature has been shown
to oscillate with time in swimming fish (e.g. Katz and
Shadwick, 1998), it was expected that the amplitude of
changes in concave-left curvature (αCL) and concave-right
curvature (αCR) could be measured.

Stage 4: testing for kinematic asymmetries

Asymmetries in undulatory motion were described by how

^
n

i=2

yn = ∆ssinθ + (3)∆ssin[∆sκ(si)] ,

^
n

i=2

xn = ∆scosθ + (2)∆scos[∆sκ(si)] ,

.   (1)κ(s,t) =
κCR for (s<si and t<G) or (s>si and t>G)

κCL for (s>si and t<G) or (s<si and t>G)


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Fig. 3. Typical changes in tail midline shape during a tail beat illustrated by one individual. On the left are coordinates for the midline taken from a
dorsal view and the curves that approximate their shape. The numbers at the end of the curves specify the corresponding time (t) in terms of the
tail-beat cycle. The curvature profiles corresponding to these curves are shown on the right. (A,B) t=0.03 tail-beat cycles (shown in black), is
within the first half of the tail beat (t<0.5) and tail motion is directed towards the right side of the body. At this moment, the section of the tail
anterior to the inflection point (s<si) bends concave-right with a curvature equal to κCR, and positions posterior to the inflection point (s>si) are bent
concave-left with a curvature of κCL. t=0.57 tail-beat cycles (shown in red) is within the second half of the tail beat (t>0.5), and the tail is moving
towards the left side of the body. Tail curvature is equal to κCL anterior to the inflection point (s<si) and to κCR posterior to the inflection point
(s>si). (C,D) Tail motion shown at 4ms intervals (roughly 0.03 tail-beat cycles) for the first half of a tail beat (t<0.5), when the tail is moving
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each of the variables describing midline shape (θ, κCL, κCR and
si) changed with time. Three sources of asymmetry were
hypothesized and tested (see below). (i) As observed in the
turning maneuvers of the eel Anguilla rostrata(Gray, 1933),
the speed with which waves travel down the tail may vary with
time. Wave speed ε was hypothesized to be different between
the first and second halves of the tail-beat cycle. (ii) An
asymmetry would also result if the trunk angle oscillated
around a non-zero baseline value (β). (iii) Unequal values for
the amplitude of curvature changes between the concave-left
(αCL) and concave-right (αCR) sides should also cause
asymmetry.

Tail bending stiffness

To address whether tails resist deflection more in one
direction than the other, three-point bending tests were
conducted using the general approach taken by Adams et al.
(Adams et al., 1990) for Xenopus laevisembryonic notochords.
A beam of known stiffness was pushed against the lateral
surface of the tail to place it in bending. This beam, which was
composed of silver, was 5 cm in length and 100µm in diameter.
The two static points held in opposition to the beam were
placed 0.4 mm apart. All lateral deflections of both the silver
beam and the portion of tail in bending were kept below 10 %
of their length in order not to violate the assumptions of low-
deflection beam theory. This theory uses the following
equation to calculate flexural stiffness from a three-point
bending test (Adams et al., 1990):

where EI is the flexural stiffness, F is the force that the tip of
the silver beam exerted on the tail, l is the length of the portion
of the tail between the two supports and δ is the lateral
deflection of the tail resulting from the load.

Hydrodynamic model

Kinematics and morphometrics alone can only provide
qualitative hypotheses for their effect on the mechanics of
swimming. The hydrodynamic model of Jordan (Jordan, 1992)
was used to calculate a quantitative prediction of the turning
moments generated by the kinematics and morphometrics
measured for D. occidentalis. This model is appropriate for the
size and swimming speed range of ascidian larvae, where both
viscous and inertial forces are important to their
hydrodynamics. Reynolds number (Re) represents the ratio of
inertial to viscous forces and it is calculated as:

where U is the swimming speed, L is a characteristic length
(taken as the distance between the anterior margin of the trunk
and the posterior margin of the tail) and ν is the kinematic
viscosity. The mean ±1 S.D. Recalculated for D. occidentalis
larvae was 92.9±20 (N=11; see Table 1).

Jordan (Jordan, 1992) modeled the hydrodynamic forces
generated by swimming at intermediate Reynolds’ numbers
(1<Re<1000) by body undulation for the chaetognath Sagitta
elegans. According to this blade-element model, the force
acting on a segment of the tail is the vector sum of the
acceleration reaction (i.e. ‘reactive forces’, Freactive), and the
quasi-steady forces acting normal and tangential to the segment
(i.e. ‘resistive forces’, Fresistive). The following equations were
used to calculate the instantaneous force (Ftotal) acting on a tail
segment:

Ftotal = Fresistive+ Freactive, (6)

Fresistive= GρA(CnVn2n̂ + CtVt2t̂ ) , (7)

where ρ is the density of water, A is the surface area of the tail
segment, Cn and Ct are the respective normal and tangential
force coefficients, Vn and Vt are the normal and tangential
components of velocity for the segment, n̂ is the unit vector
normal to the surface of the tail segment, t̂ is the unit vector
tangential to the surface of the tail segment and m is the mass
of water accelerated by the tail segment, known as the added
mass. A unit vector has a magnitude of 1 and, in this case,
points in the normal or tangential direction of a tail segment
with respect to the global (i.e. inertial) frame of reference
(Thomas and Finney, 1980). Added mass was calculated using
the method described by Lighthill (Lighthill, 1975) for each
tail segment:

m= Sπρh2∆s, (9)

where ∆s is the length and h is the height of the tail segment
(the distance between the dorsal and ventral margins of the fin).
Acceleration of a tail segment was calculated as the component
of the discrete changes in velocity in the direction normal to
the tail’s surface (∆Vn) divided by change in time (∆t). The
following equations for the normal and tangential force
coefficients were used (Jordan, 1992):

Cn = 10[1.28−0.809(logRe)+0.134(logRe)2] , (10)

Ct = 0.64(Re)−1/2. (11)

Since larvae swam steadily, the conventional measure of Re
for undulatory swimmers (equation 5) was used instead of the
method of Jordan (Jordan, 1992), which calculates Refor each
instant of time.

The forces and moments generated by each tail segment
were calculated using the measured morphometrics of the tail
(see above) and the kinematics from the body’s frame of
reference (see above) for each instant of time. The origin of
this coordinate system was positioned at the intersection of the
tail and the trunk, a point I will refer to as the center of body.
The total moment around the center of body was equal to the
sum of all moments generated by tail segments. To assess
whether the kinematics generated greater moments in one
direction than the other, the mean value of total moments
during left-directed half tail beats was compared with the mean

∆Vn

∆t
Freactive= mn̂ , (8)

UL

ν
Re= , (5)

Fl3

48δ
EI = , (4)
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value during right-directed half tail beats. These calculations
were executed with Matlab (version 5.2, Mathworks) software
running on a computer (IBM Thinkpad 760XD).

Statistical design

Statistical tests were used to detect asymmetries in body
morphology, kinematics, turning moments and the bending
stiffness of the tail. A Kolomogorov–Smirnov test was used to
test the normality of data (Sokal and Rohlf, 1995). When
samples were found not to be normally distributed (i.e.
Kolomogorov–Smirnov test, P<0.05), the median and range
were reported. The assumption of normality was avoided when
comparing samples by using a non-parametric Mann–Whitney
U-test. Samples were considered significantly different if the
Mann–Whitney U-test found P<0.05 (Sokal and Rohlf, 1995).
Normally distributed samples (i.e. Kolomogorov–Smirnov
test, P>0.05) were reported by their mean and standard
deviation. These distributions were considered significantly
different if a Student’s t-test found P<0.05. Since no data could
be assumed to have a normal distribution, data are illustrated
in the figures by their median, range, quartiles and outliers
rather than by their mean and standard deviation.

Results
Symmetry of the trunk and tail fin

In the trunk, no significant differences were detected
between the distances from the left margin of the body to
the midline and from the right margin to the midline
(Mann–Whitney U-test, P>0.05, N=18; Fig. 2A). Comparisons
between the distances from the midline to the dorsal margin of
the larva and the distances from the midline to the ventral
margin were also not significantly different at any position
along the length of the trunk or tail (Mann–Whitney U-test,
P>0.05, N=18; Fig. 2B). These data suggest that the bodies of
larvae are symmetrical with respect to the midline in all
individuals (N=18). Although symmetrical, the tails of all
larvae were bent in the concave-left direction, as illustrated by
the individual shown in Fig. 1 (measurements of resting tail
curvature given below).

Symmetry of the undulatory motion

An example of the changes with time in the shape of the
midline of the tail in a swimming larva is illustrated in Fig. 3.
Changes in concave-left curvature (κCL), concave-right
curvature (κCR), the position of the inflection point (si) and the
trunk angle (θ) were described by the following functions of
time (Fig. 4):

si(t) = εt , (12)

κCL(t) = −αCL[cos(2πt) + 1] , (13)

κCR(t) = αCR{cos[2π(t + G)] + 1} , (14)

θ(t) = αθcos(2πt) + β . (15)

The data used to test the three possible sources of kinematic
asymmetry are shown in Fig. 5. The amplitude of concave-left

curvature (median 0.68 rad mm−1, range 0.41 rad mm−1, N=11)
is significantly different (Mann–Whitney U-test, P!0.001,
N=11; Fig. 5A) from concave-right curvature in the same tail
beat (median 0.42 rad mm−1, range 0.40 rad mm−1, N=11), and
this difference generates asymmetry in the motion of the tail.
The ratio of αCL to αCR is a measure of kinematic asymmetry;
a value of 1 corresponds to no asymmetry due to curvature
differences. Because it is often more convenient to measure
maximum values of curvature than the amplitude of curvature
changes, the ratio of αCL to αCR for swimming sequences was
compared with the ratio of maximum curvature in the concave-
left (κCLmax) and the concave-right (κCRmax) directions for the
same sequences. These ratios were found to be statistically
indistinguishable (unpaired two-tailed t-test, P=0.624), as
represented by the following relationship:

The ratio αCL to αCR (1.9±0.8, mean ±1 S.D., N=11) was
greater than 1 in all larvae (Kolomogorov–Smirnov, P>0.05),
which means that the maximum curvature on the concave-left
side was greater than the curvature on the concave-right side.
Trunk angle oscillated around a baseline value (β) that was
significantly less than zero (Fig. 5C) (Kolomogorov–Smirnov,
P>0.05; mean ±1 S.D. −0.13±0.08 rad; one-tailed t-test,
P<0.001, N=11), meaning that the trunk is generally bent in
the concave-left direction. Wave speed (ε), in contrast, did not
appear to be a source of kinematic asymmetry because it was
not significantly different between the left-directed (median 8.3
mm s−1, range 47.5 mm s−1, N=11) and right-directed (median
42.2 mm s−1, range 37.5 mm s−1, N=11) halves of the tail beat
and therefore cannot cause any asymmetries (Mann–Whitney
U-test, P=0.49, N=11; Fig. 5B).

To summarize these results, the tails of larvae moved with
asymmetries that resulted in the tail bending more towards to
the left than towards the right (Fig. 3, Fig. 4, Fig. 5). Two
parameters describe these asymmetries: curvature amplitude
and baseline trunk angle. Curvature amplitude was greater in
the concave-left than in the concave-right direction. Baseline
trunk angle was found to be significantly less than zero, which
means that the tail oscillated at an oblique angle towards the
left of the midline of the trunk.

The median tail curvature measured over the tail-beat cycle
was compared with the tail curvature of resting larvae. The
median value was chosen because, unlike the mean, its value
does not vary with the speed of tail motion. There was no
significant difference between the tail curvature of resting
larvae and the median value for tail curvature in swimming
larvae (both samples normally distributed: Kolomogorov–
Smirnov test, P>0.05; two-tailed, unpaired t-test, P=0.964,
N=11; Fig. 6C).

Flexural stiffness of the tail

Larval tail bending stiffness did not require more force to
deflect the tail in one direction than in the other (Fig. 7). This
result refutes the hypothesis that an asymmetry in flexural

κCLmax

κCRmax

αCL

αCR
≈ . (16)
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stiffness causes the kinematic asymmetries observed. Although
stiffness in some individuals was greater in the concave-left
direction than the concave-right direction (e.g. Fig. 7A),
concave-left stiffness (median 0.29×10−13N m2, range
2.01×10−13N m2, N=13) was generally not significantly
different (Mann–Whitney U-test, P=0.419, N=13) from
concave-right stiffness (median 0.40×10−13N m2, range
1.08×10−13N m2, N=13; Fig. 7B) among larvae.

Turning moments predicted from the kinematic asymmetries

The hydrodynamic model of Jordan (Jordan, 1992) for

intermediate-Reswimming was used to formulate predictions
for the turning moments generated by the kinematic patterns
observed for D. occidentalis larvae (Fig. 8). The time-
averaged mean moment (1.75×10−9±0.12×10−9 N m, mean ±1
S.D., N=11) for the kinematics of single tail beats was
significantly greater than zero and therefore acted in the
counterclockwise direction (Kolomogorov–Smirnov test,
P>0.05; one-tailed, unpaired t-test, P=0.019). This result
supports the hypothesis that the kinematic asymmetries
observed (Fig. 3, Fig. 4, Fig. 5) act as a mechanism to rotate
the body.

M. J. MCHENRY
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Discussion
Generation of kinematic asymmetries

The similarity between median tail curvature during
swimming and the tail curvature of larvae at rest (Fig. 6)
suggests that the shape of the resting tail may affect the
symmetry of tail midline kinematics. However, if the muscle
stress required to bend the tail is negligible compared with the

stress that the muscles are capable of generating, then it is
unlikely that the resting shape of the tail affects the swimming
motion. The data presented here for the flexural stiffness of the
tail (Fig. 7) may be used to estimate the muscle stress required
to bend the tail.

If a larva were to bend its tail by isometric contraction of its
muscles on one side, then the moment generated at any point
along the tail’s length should be resisted by a moment
generated by the flexural stiffness of the tail. This situation is
modeled in the relationship below, in which the symbols on
the left represent the moment generated by the muscles and the
symbols on the right represent the moment generated by the
passive properties of the tail (Denny, 1988):

Fmz= κEI , (17)

where the product of muscle force (Fm) and the distance (z)
between the neutral axis and the muscle’s center is equal and
opposite to the product of the curvature of the tail (κ) and its
flexural stiffness (EI). Since muscle force is the product of
muscle stress (σ) and the cross-sectional area of the muscle
(Sm), it follows that:

To estimate the isometric muscle stress necessary to bend
the tail, values for z (9.3×10−6m) and Sm (3.3×10−11m) were
measured from the transverse section of a D. occidentalistail
pictured in fig. 2 of Cavey and Cloney (Cavey and Cloney,
1972). Using the absolute value of the largest value for κCLmax

(2.5×103rad m−1) (Table 1) and the maximum value for EI
(2.2×10−13N m2) (Fig. 7) recorded in the present study, a high
boundary of σ equals 1800 kPa. By the same calculation, using
the smallest values for κCRmax (0.7×103rad m−1) and EI
(5.0×10−15N m2), a low boundary for σ equals 11 kPa. For
comparison, maximum isometric stress for invertebrate muscle
ranges between 100 and 1000 kPa (Daniel, 1995), but there are
no published values for ascidians. These rough estimates
suggest that the stress required simply to bend the tail is at least
10 % of the maximum stress that the muscle can generate.
Since animals generally generate muscle stresses much lower
than isometric values during steady locomotion (Full, 1997), it
is likely that a much larger fraction of the total force generated
by the muscles is used just to bend the tail. It is therefore
plausible that the flexural stiffness measured (Fig. 7) is great
enough that the resting curvature of the tail affects the
symmetry of swimming kinematics.

The mechanics of helical swimming

Although the results presented here emphasize the
importance of kinematic asymmetries to the hydrodynamics of
swimming in D. occidentalislarvae, this mechanism alone is
insufficient to explain the dynamics of helical swimming. If
the tail fin does not twist during swimming, the asymmetry in
lateral undulations described here (Fig. 5) should result in
swimming along a circular, not helical, trajectory. Tail motion
in the frontal plane only generates forces within that plane and

κEI

Smz
σ = , (18)
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moments perpendicular to that plane (Fig. 9A). Assuming a
dorso-ventrally oriented tail fin, this means that kinematic
asymmetries in lateral undulation can act only as a mechanism
for generating a yawing moment.

To swim along a helix, a larva must generate pitching or

rolling moments in addition to a yawing moment. These
moments may be generated by the buoyancy force and the
weight of the body (Fig. 9B). Buoyancy acts at the body’s
center of volume, and weight acts at its center of mass. If the
body is composed of tissue of uniform density, the center of
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2971Helical swimming in ascidian larvae

mass and center of volume would occur at the same point.
Depending on the relative magnitudes of the body’s
buoyancy and weight, these forces will tend to accelerate the
body down in the direction of gravity or up towards the

water’s surface. It is likely that combining the hydrodynamics
of swimming with the weight and buoyancy of a body of
uniform density could generate pitching or rolling moments.
However, these moments would be greater if the body’s
tissues were not of uniform density. For example, if the
anteriorly positioned otolith organ was more dense than the
rest of the body, then the center of mass should be anterior
to the center of volume. In this case, the distance between the
center of mass and the center of buoyancy would create a
moment arm that could generate a pitching moment, as shown
in Fig. 9B. This ‘non-uniform-density model’ has been
suggested to play a role in the geotaxic behavior of a variety
of marine invertebrate larvae (Chia et al., 1984). This
mechanism has been proposed for generating moments in the
helical swimming of both bivalve larvae (Jonsson et al.,
1991) and frog tadpoles (Roberts et al., 2000), but it remains
to be integrated with hydrodynamic mechanisms in any
system.

A

B

Frontal plane

Trunk
Tail

Hydrodynamic 
force vector

Yawing moment

Pitching 
moment

Buoyancy 
force

Center  
of mass

Weight

Fig. 9. The dynamics of swimming in ascidian larvae. A free-
swimming larva is drawn from a dorsal and posterior perspective for
an instant of time when the tail is beating towards the left. Some of
the forces likely to influence the swimming mechanics are drawn to
illustrate how moments acting on the center of mass could be
generated in one (A) or two (B) dimensions. (A) Only hydrodynamic
forces acting on the frontal plane of the body are drawn. As this larva
swims forward, a yawing moment in the counterclockwise direction
will tend to rotate the body in a counterclockwise direction around an
axis perpendicular to the frontal plane. If only these hydrodynamic
forces acted on the body for the entire tail beat, this larva would
follow a circular trajectory lying on a plane coincident with the
frontal plane of the body. (B) In addition to hydrodynamic forces,
this larva has a buoyancy force and the weight of the body acting on
it. The buoyancy force acting at the body’s center of volume is
posterior to the center of mass and therefore generates a pitching
moment. With both pitching and yawing moments, the body would
tend to rotate around an axis that is not perpendicular to the frontal
plane. As a result, the larva would swim along a helical trajectory.

Table 1.Swimming kinematics for 11 individuals of Distaplia occidentalis

L U f κCLmax κCRmax

Individual (mm) (mm s−1) (Hz) Re (rad mm−1) (rad mm−1)

1 3.34 29.1 14.7 92.9 1.7 0.9
2 3.39 22.0 17.2 71.3 2.0 1.4
3 3.35 25.3 15.1 80.9 1.6 0.9
4 3.58 22.6 11.6 77.3 1.7 1.1
5 3.37 23.4 18.5 75.3 2.0 1.0
6 3.49 31.0 20.0 103.3 2.4 1.3
7 3.96 28.6 21.7 108.3 1.3 0.9
8 3.56 40.7 16.6 138.4 2.2 0.9
9 3.54 28.1 18.5 95.0 2.0 0.8
10 3.60 29.5 25.0 101.6 2.5 0.7
11 3.33 24.4 20.0 77.4 1.6 1.0

L, body length; U, swimming speed; f, tail-beat frequency; Re, Reynolds number; κCLmax, maximum concave-left curvature; κCRmax,
maximum concave-right curvature.

All values are expressed as the mean over the duration of the swimming sequence.
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It is possible that the kinematic asymmetries described here
could contribute to the generation of rolling or pitching moments
if the tail fin were to twist while it undulates. Twisting along the
longitudinal axis of the tail could occur if the notochord and
muscle cells were not sufficiently stiff in torsion or if the dorsal
half of the fin had a different flexibility from that of the ventral
half. A twist in the tail fin could direct some of the hydrodynamic
force out of the frontal plane of the body and, thereby, generate
a moment arm for rolling or pitching rotation. Unfortunately, the
video recordings for the present study did not have a spatial
resolution great enough to observe twisting in the tail fin.
However, in the few video frames in which the fin was visible,
no twisting in the tail fin could be seen.

Helical versusstraight swimming

Crenshaw (Crenshaw, 1993) suggested that organisms having
single light-sensing organs with poor directional sensitivity may
orient to light by swimming along a helical trajectory. This
mechanism, known as helical klinotaxis, may facilitate
phototaxis in ascidian larvae (Svane and Young, 1989), which
have one ocellus. Alternatively, swimming along a straight
trajectory requires the body to be stabilized against body
rotation. This would probably be difficult for ascidian larvae
because they possess no paired appendages for swimming and
they are often found in turbulent environments (Berrill, 1950).
Although helical swimming may not bestow ascidian larvae with
greater speed, efficiency and maneuverability than straight
swimming, it does appear to make oriented swimming possible
despite a limited sensory and motor capacity. It seems plausible
that high-performance larval swimming may be less important
in the life history of an ascidian than sufficient phototaxis with
a minimal morphological investment.

In summary, the results presented here suggest that
swimming D. occidentalislarvae generate yawing moments by
moving their tails asymmetrically (Fig. 8). Both the angle
between the trunk and the tail (i.e. trunk angle; Fig. 1) and the
tail curvature cause the tail to bend towards the left during
swimming (Fig. 3, Fig. 4). This asymmetry is predicted by
hydrodynamic theory to generate moments that should be great
enough to rotate the body (Fig. 8) and therefore contribute to
helical swimming. The flexural stiffness of the tail (Fig. 7) may
be great enough that kinematic asymmetries are caused by the
bent shape of the resting tail (Fig. 6).

List of symbols
A surface area of a tail segment
Cn normal force coefficient
Ct tangential force coefficient
EI flexural stiffness
f tail-beat frequency
F force
Fm muscle force
Freactive reactive force on a tail segment
Fresistive resistive force on a tail segment
Ftotal total force on a tail segment

h height of a tail segment
l length of the tail in three-point bending
L body length
m added mass of a tail segment
n tail segment number
n̂ unit vector normal to a tail segment’s surface
Re Reynolds number
s position along length of body
si position of inflection point on the body
Sm cross-sectional area of muscle mass
t time
t̂ unit vector tangential to a tail segment’s surface
U swimming speed
Vn normal component of tail segment velocity
Vt tangential component of tail segment velocity
z distance from the tail midline to the center of 

muscle mass
αCL amplitude of concave-left curvature changes 

during swimming
αCR amplitude of concave-right curvature changes 

during swimming
αθ amplitude of trunk angle changes during swimming
β baseline of periodic changes in trunk angle
ν kinematic viscosity
δ deflection of the tail
∆s length of a tail segment
∆φ angular flexion between neighboring segments
ε wave speed of inflection point propagation
θ trunk angle
κ curvature of a tail segment
κ– mean curvature over the length of the tail
κCL concave-left curvature
κCLmax maximum concave-left curvature
κCR concave-right curvature
κCRmax maximum concave-right curvature
κM
– median tail curvature measured over a tail-beat cycle
ρ water density
σ muscle stress
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