The biomechanics of sensory organs

Sanjay P. Sane1,* and Matthew J. McHenry†

1National Centre for Biological Sciences, Tata Institute of Fundamental Research, GKVK Campus, Bellary Road, Bangalore 560 065, India; †Department of Ecology & Evolutionary Biology, University of California, Irvine, 321 Steinhaus Hall, Irvine, CA, 92697, USA

Synopsis Studies of mechanosensory systems have largely focused on the filter characteristics of their neural components in relation to their ultimate function. Less attention has focused on the role of the physical structure of the sensory organ which also acts as a mechanical filter of the sensory input. This biomechanical filtering is readily apparent in the case of several mechanosensory systems that transduce information about the deformations of the sensory organs in response to external forces. Because these deformations critically depend on the geometry and material properties of the mechanosensory organs, it is necessary to conduct focused studies on the biomechanical characteristics of these organs when studying the encoding properties of the mechanosensory system. Modern experimental tools such as Laser Doppler Vibrometry and computational tools such as Computational Fluid Dynamics and Finite Element Analysis provide the means for determining the sensory pre-filtering properties of small-scale mechanosensory structures. In all the cases covered in this review, the physical properties of the sensory organs play a central role in determining the signals received by the nervous system.

Introduction

The information that an animal acquires about its surroundings is filtered through its sensory apparatus. This filtering is influenced by the material and geometric architecture of a sensory organ and its underlying nervous system. Although the neural circuitry is the focus of most studies of how the sensory system detects environmental information, there is relatively little emphasis on the role of the structural properties of sensory organs or the medium surrounding the organ in modifying sensory inputs. Yet, biomechanical filtering often has profound implications for the animal’s ability to sense a stimulus and in several cases the material architecture of sensory organs is finely tuned to signals of ecological relevance. Thus, their structural biomechanics constitute an essential component of their ultimate function (Fig. 1).

Despite their potential importance, little is known about the mechanical properties of most sensory organs. This gap in knowledge likely stems from the traditional division between the fields of comparative biomechanics and sensory neurobiology. Here, we provide an overview of studies that have specifically focused on the biomechanics of mechanosensory systems. This body of research combines biomechanical and neurobiological principles to address the challenges faced by animals as they sense structural strain, the flow of air or water, and sound. We highlight recent developments in these diverse systems to underscore the importance of an integrated approach when addressing how animals acquire information about their physical environment. Although this review primarily focuses on mechanosensory systems, such an integrated approach is also important in understanding the function of other sensory modalities. Rather than focus on various sensory systems in a taxon-specific manner, we have chosen to highlight the sensory challenges and our knowledge of how these are resolved in diverse taxa. In the process, we describe the main technical challenges facing research on the biomechanics of sensory organs to help identify areas of fruitful collaboration between researchers working in the areas of biomechanics, mechanical engineering, and neurobiology.

Sensory challenges

Sensing cuticular strains

The stiff exoskeleton of an arthropod challenges the animal’s ability to detect external physical forces on its body. Arthropods have evolved multiple
mechanosensory structures that detect the exoskeletal strains caused by external forces. These include campaniform sensilla (Fig. 2A and B) and lyriform organs (Fig. 3A–C), that are located on the surface of the exoskeleton and which are lined internally with the dendritic arbors of sensory neurons. As described below, the strain-sensing ability of these structures derives from the concentration and amplification of the strains on the cuticle arising from regions of material discontinuity in the exoskeleton. In addition to exoskeletal structures, insects and crustaceans also detect movements between joints using internal mechanosensors called chordotonal organs (for a detailed review, see Field and Matheson, 1998), the discussion of which is beyond the scope of the current review.

Campaniform sensilla

Arthropods sense cuticular stresses using mechanosensory receptors called campaniform sensilla, which are composed of cuticle and of sensory cells (Fig. 2A and B). In insects, these organs occur either as a single sensillum [e.g. on the wings of flies (Dickinson, 1992)], irregularly arranged fields (e.g. on the legs of a cockroach) (Pringle, 1938b), or a regular pattern of sensilla (e.g. on the base of fly halteres; Fig. 2A; Pringle, 1948). Each organ contains a small (on the order of 10 μm) campaniform cap situated at the center of a circular or oval indentation in the cuticle. In most cases, the cap is composed of a stiff exoskeletal layer that overlays a spongy cuticular layer. The spongy layer and the cap membrane are both highly extensible and thought to contain the elastic rubber protein resilin, based on their mechanical and biochemical properties (Thurm, 1964). The different components of each campaniform sensillum have vastly different material properties. The elastic modulus of the cuticular cap (6 GPa) is 600 times that of the cuticular membrane (10 MPa), which is five times more stiff than the spongy cuticle. This structure is connected to the dendritic ends of a bipolar sensory neuron via an intermediate structure called the tubular body, which consists of a bundle of microtubules (Thurm, 1964). Sensitivity of the campaniform sensillum is thus a function both of local geometry and of composite material properties of the cuticle.

Since Pringle’s first demonstration that campaniform sensilla are primary sensors of cuticular strain (Pringle, 1938a, b), it is increasingly evident that amplification of the tiny strains is first facilitated by the biomechanics of campaniform structure. The forces acting on the cuticle surrounding the campaniform sensillum are transformed by the geometry of the campaniform sensillum into an up-and-down motion of the bell-shaped cap. This motion is transduced by the underlying sensory neuron into graded or action potentials with nanometer-scale sensitivity (Fig. 2B) (Chapman, 1965; Dickinson, 1990). The overall geometry of the campaniform sensillum influences the directional sensitivity of this transduction. For example, an oval-shaped organ is most sensitive to stresses acting at right angles to their major axis, whereas circular campaniform sensilla respond to strains equally from all directions. In many insect structures, such as the wing hinge or the haltere base, which have complex geometries (Fig. 2A), the measurement and modeling of the in vivo strain patterns in these regions poses a major technical challenge.

Barring a few efforts to directly measure the strains with strain gauges (Blickhan and Barth, 1985), there have been very few attempts to determine cuticular strains as a means of understanding the degree of biomechanical filtering in the campaniform sensilla. In absence of such data, it is not possible to determine the precise nature of the stimuli experienced by the individual or even by a field of sensory neurons. As a result, researchers have largely relied on numerical (Skordos et al., 2002; Vincent et al., 2007) or analytical (Cocatre-Zilgien and Delcomyn, 1999) modeling to understand how applied forces transform into strain fields around the campaniform sensilla. Such models have usually assumed a simplified shape because measurements of the geometry of the campaniform sensilla and their surrounding region are sparse.

On the numerical front, Skordos et al. (2002) have developed a Finite Element Model of a specific campaniform sensillum in the blowfly, Calliphora vicina. This model of a particular campaniform (the pG4 sensillum from the posterior of the mesothoracic leg; also see Gnatzy et al., 1987; Grunert and Gnatzy, 1987) enables investigation of the mechanical contributions of the campaniform cap, its surrounding collar, the joint membrane and an annular compliant socket septum with its spongy compliant tissue. In this study, the cuticle-campaniform
system was initially modeled as a 2D flat plate with an oval hole to address how the presence of such holes influences the strain patterns on the cuticle. Skordos et al.’s study showed that the global stiffness of the cuticle is unlikely to be greatly affected by the presence of campaniform sensilla. However, the local deformations are greatly amplified in the region around the campaniform “holes” in response to broadly applied forces. This stress-intensification explains why any perforated tissue is more likely to tear at the perforations rather than in the non-perforated area. Thus, it appears that detection of cuticular stresses relies on the amplification of these stresses by concentrating them through mechanical discontinuities created by a single, or a group of, campaniform sensilla. Furthermore, the

Fig. 2 (A) The base of the haltere of the dipteran, Hermetia illucens. Inset shows the regularly arranged fields of campaniform sensilla. Scale bar corresponds to 100 µm. (B) A diagram of the cross-section of a campaniform sensillum.
thickening of cuticle along the collar of the campaniform sensilla may help prevent the tissue from tearing at these sites.

Skordos et al. (2002) further extended their model to 3D so as to include various components of the campaniform and its surrounding geometry. Although the data on material properties of various components of a campaniform sensillum were not available, the authors were able to use the staining characteristics of the tissue to infer the material properties and composition of various parts of the tissue. Their 3D campaniform model suggested that the architecture of a campaniform sensillum amplifies the applied stress signal above that which can be achieved merely by the material discontinuity in the cuticle around the organ. In this model, alterations in material properties of the joint membrane, the cuticular cap, or the spongy cuticle had very little influence on this coupling mechanism. However, the material stiffness of the surrounding collar made a significant difference to the output of the campaniform. This suggests that collar mechanics may be the main “tunable” entity from the functional perspective. Therefore, subtle alterations in the thickness or in the degree of tanning of the collar cuticle can enable the campaniform to alter its sensitivity to environmental stresses. Because the outputs of a model of a campaniform sensillum with heterogeneous architecture are fundamentally different from that of one with homogenous material, the cuticular microstructure is also of crucial importance. Developing a finite-element model with such composite properties is especially difficult, as the properties of the cuticle vary greatly within the small region surrounding the campaniform. These models are consequently highly dependent on assumptions about the material properties of the sensory structure. Nevertheless, as evident from the above studies, such models are useful in generating several broad functional insights into the function of campaniform sensilla. Recently, Vincent et al. (2007) extended this model to groups of either circular or oval holes to investigate how fields of campaniform sensilla, such as those at the base of a haltere or a wing, may experience the spatial distribution of the applied mechanical stress.

Lyriform organs

Arachnid slit sensilla present another example of strain sensing involving biomechanics of the exoskeleton (Fig. 3A and B). Like the campaniform sensilla, the slit sensory organs are distributed all over the body of arachnids either as single slits or as arrays of slits concentrated in patches near the extremities. At several locations along the body and limbs, the slit organs occur in parallel groups, loosely resembling the strings of a lyre. This so-called “lyriform organ” has proved particularly amenable to experimentation because of the easy accessibility of the sensory structures, their underlying nervous system, and the efferent arbor that modulate gain of the sensory system (French et al., 2002; Barth, 2004). Each slit is associated with two large bipolar mechanosensory neurons that enable this organ to detect any deformation in the slit created by an external load. This organ is capable of detecting signals like the vibrations induced in a spider’s web by insect-prey, mates, or predators. The mechanosensitive channels of the two bipolar neurons lie within the dendritic tips arborizing at the slits. These dendritic tips are surrounded by a Na⁺-rich receptor lymph. One neuron extends a process to the outer membrane of the slit and the second one is shorter and connects to the inner membrane (Fig. 3C). Under mechanical stress, the net compression of the lyriform slits on the spider’s legs causes the underlying bipolar neurons to generate graded receptor potentials at low strains and action potentials at high strains. (French et al., 2002; Barth, 2004)

The geometry of the lyriform organ is integral to its mechanics and hence to sensitivity to mechanical signals. Its mechanics has been studied extensively, including direct strain measurements (Blickhan and Barth, 1985) and numerical modeling of the regions around lyriform organs (Hößl et al., 2006, 2007). To determine how an external stress distributes through the cuticular lyriform structures, Hößl et al. (2007) developed two models of the slit sensors. The first (Hößl et al., 2006) was an analytical model that treated the slits as interacting fractures through a stiff membrane. This approach assumed that the long, thin slits (length/width ratio ~100) approximate closely spaced and mutually interacting surface cracks. Key to their approach was the approximation of superposition of stress. This means that a plate of cuticle consisting of n cracks and loaded by an external stress may be mathematically treated as a plate containing no cracks linearly superposed with n plates each containing one of the n cracks. Further, each crack experiences stress equivalent to the externally loaded stress and the stresses induced by the presence of other cracks. The results of this model showed some qualitative agreement with data on slit-face displacement as functions of external and internally modified stresses acquired on a mechanical polymer model of arachnid slits (Barth et al., 1984), but this approach suffers from the limitation that the
slits have to be spaced by at least one-half the length of each slit.

To overcome the limitations of this analytical approach, a finite element model (Hösl et al., 2007) was used to compute the strains around the slit organs based on measured material properties of the cuticle (Barth et al., 1984). In the finite element model, it was possible to place the slits arbitrarily close and determine their influence on each other. Although much simplified, compared to slit sensilla, such models enhance our understanding of the functional consequences of different arrangements of slits. Furthermore, the distribution of strain predicted by such models may be compared to morphological parameters, e.g. the location of dendritic arbors along the slits. It is thus possible to use these models to understand how exoskeletal strains around the slit organs are transduced by the sensory system.

Sensing the flow of fluids

Animals have independently evolved several mechanosensory strategies that sense the flow of fluids. These include such diverse mechanosensory modalities as the sensory hairs of arachnids (Görner, 1965), cephalic bristles (Weis-Fogh, 1947) and antennae in insects (Heran, 1957), whiskers in mammals (Dehnhardt et al., 1998), and the lateral line system.
in fish (Dijkgraaf, 1963; Bleckmann and Rathmeyer, 1994). Because detection of flow informs the animal about approaching predators, self-motion, or unwanted displacement, it may be a key to survival. The dynamics of these organs depend on the size of the animal and the fluid dynamic regime in which they operate. In all these cases, movement in the fluid medium is detected by the deflection of a sensory organ due to an external flow and its subsequent transduction by the underlying sensory neurons. Here we describe sensory organs in insects, arachnids, and fishes to illustrate the role of biomechanics in the sensing of flow.

Filiform hair

In insects from diverse orders such as Orthoptera (crickets) and Blattaria (cockroaches), the task of detecting air flow is carried out by sets of filiform hairs present on the cerci (Fig. 3A and D; also see Fig. 5) (Edwards and Palka, 1974; Palka and Edwards, 1974; Landolfa and Miller, 1995). These hairs have a great range in length (30–1500 μm) and diameter (1.5–9 μm) (Dumpert and Gnatzy, 1996; Barth and Holler, 1999). In these studies, the filiform cercal hair, trichobothria are also present in a range of sizes that affect their spectral sensitivity. The observed range of trichobothria hair roughly match the predictions for the thickness of the boundary layer suggesting that the trichobothria sensory units of different lengths are tuned to detect flows of different velocities (Humphrey et al., 1993). The neurons underlying each trichobothrium have similar tuning properties irrespective of the length of the hair and thus the neural system, by itself, provides only a very coarse filter for the incoming mechanical signals. The fine tuning properties of the trichobothria are dictated primarily by the biomechanics of the hair rather than the underlying nervous system (Barth, 2004).

The observed range of trichobothria hairs (Fig. 3D and E). By applying the law of conservation of angular momentum to this model hair and accounting for fluid dynamic drag and added mass, this study predicted the spectral sensitivity of the hairs to oscillating external flow.
Specifically, it suggested that at lower frequencies (<200 Hz) longer hairs more effectively encode velocity of flow, whereas at higher frequencies (>200 Hz) shorter hairs are more effective as sensors of velocity and acceleration (Humphrey et al., 1993). These predictions were validated by direct measurements of the air-flow-driven deflection of groups of trichobothria on the tibia, metatarsus, and tarsus (Barth et al., 1993). The comprehensive approach taken by these studies provides a model to guide future studies on sensory biomechanics.

The lateral line system

The lateral line system is an organ in fishes and amphibians that detects the flow of water (Leydig, 1850). Lateral line receptors, called neuromasts, include a cluster of mechanosensory hair cells on the surface of the body; these detect flow because of their linkage to a gelatinous structure, the cupula (Coombs and Montgomery, 1999). Based on morphological differences, two types of neuromasts have been identified in fishes. In superficial neuromasts, the cupula extends from surface of the body directly into the water, whereas a canal neuromast is recessed within a channel beneath the scales (Fig. 4A and B) (Dijkgraaf, 1963; Montgomery, et al., 1995). The relatively large size of canal neuromasts (~200–600 µm in diameter versus ~30–100 µm for superficial neuromasts; Munz, 1989) and their numerous hair cells have enabled investigators to examine how the interaction of mechanics and neurobiology transforms a flow-stimulus into a nervous pattern (see Windsor and McHenry, 2009; Mogdans et al., 2004; McHenry and van Netten, 2007; Van Trump and McHenry, 2008; Bleckmann, 2008; McHenry et al. 2008 for research on the micro-mechanics of superficial neuromasts). Here, we consider the role of biomechanics in the filtering of flow signals by canal neuromasts.

Canal neuromasts filter a flow stimulus at many levels. A pressure field around the body generates flow over the body’s surface and within the canals (Fig. 4B). Movement of fluid within the canal deflects the cupula (Denton and Gray, 1983, 1989) and this deflection is transduced by the hair cells into graded receptor potentials that are encoded by a train of action potentials along an afferent neuron (Flock, 1965). Each level has the potential to attenuate some components of the frequency of a signal and more effectively transmit others. The role of biomechanics in this filtering may be evaluated by comparing the frequency response predicted by mechanical theory with the action potentials evoked by a vibrating sphere, as measured in trout (Salmo gairdneri; Kroese and Schellart, 1992). At each level, frequency responses may be calculated as transfer functions that express sensitivity in terms of the ratio of output to input of the signal (Table 1), assuming that the magnitude of an output is proportional to the input.

Frequency responses for canal neuromasts are most commonly measured with a vibrating sphere as the stimulus source. One benefit to this stimulus is that the pressure field around the sphere is well understood and easily modeled (Stokes, 1851; Harris and van Bergeijk, 1962; Kalmijn, 1988). This model calculates the gradient in pressure along the fish’s body for a fixed position of the canal relative to the sphere. Driven by this gradient, there is acceleration of water at the surface (equal to the pressure gradient, divided by water density), thereby generating flow through the canal. Because this signal increases with the square of the stimulus’ frequency for a fixed sphere displacement [i.e. 40 dB dec⁻¹; Fig. 4C(ii)], the acceleration of surface flow is proportional to the sphere’s acceleration. The flow signal received at the body’s surface is filtered by the hydrodynamics of the canal. Oscillatory flow through a cylindrical pipe is well-described by an analytical model of its hydrodynamics (Sexl 1930; Denton and Gray, 1982; van Netten, 2006). Using this model (Equation 24 in van Netten, 2006), the sensitivity of velocity of flow within the canal to acceleration of flow at the surface may be calculated. The results of these calculations suggest that for canals of sufficiently small diameter, viscosity dominates the resistance to flow at low frequencies of the stimulus [Fig. 4C(iii)]. As a consequence, the velocity of flow in the canal is directly proportional to the pressure gradient and to the acceleration of the flow at the surface. This relationship is disrupted at higher frequencies, as the fluid’s inertia causes velocity to reduce in inverse proportion to frequency (i.e. −20 dB dec⁻¹). Thus, the canal serves as a first-order low-pass filter of acceleration at the surface (Denton and Gray, 1983; van Netten, 2006).

An additional biomechanical filter is provided by the fluid and structural dynamics of the cupula. An analytical model of cupular dynamics was developed and tested by nanometer-scale deflection measurements with laser interferometry (van Netten and Kroese, 1987; van Netten, 1988, 1989; van Netten and Khanna, 1994). This model demonstrates that at low frequencies, viscous drag acts to deflect the cupula. The combination of this force and the elastic resistance of the hair cells cause the cupula to deflect in proportion to the velocity of flow in the canal. As the frequency of the stimulus increases, stiffness
of the hair cells and the mass of the cupula and the fluid drive the neuromast to resonate (van Netten, 1991). This resonance enables cupular deflections to have an elevated sensitivity at higher frequencies (van Netten, 1991). This model (Equation 13 in van Netten, 2006) may be used to calculate the sensitivity of cupular deflection to the velocity of flow in the canal [Fig. 4C(iv), using parameter values in Table 1]. The rise in sensitivity predicted occurs with a peak at \(\sim 115 \text{ Hz} \), which is well within the range of frequencies at which hydrodynamics attenuate the velocity of flow within the canal [Fig. 4C(iii)]. The counter-acting trends of elevated deflection of the cupula and the attenuation of flow velocity within the canal at higher frequencies cause the combined sensitivity of the cupula and canal to remain relatively constant up to \(\sim 115 \text{ Hz} \) [Fig. 4C(i)]. At greater frequencies, both the cupula and canal contribute equally to a decline in sensitivity (at \(-40 \text{ dB} \text{ dec}^{-1} \)). Thus, the combined influence
of the hydrodynamics of the canal and micromechanics of the neuromast create a low-pass filter with cupula deflections that are proportional to flow acceleration at the body’s surface over a broad range of low frequencies (van Netten, 2006). Given that the cupula moves as a rigid body, carrying with it the hair bundles projecting from the apical surface of the hair cells (van Netten and Kroese, 1989), these deflections may be interpreted as the input for the neurophysiology of the canal system.

The effect of all levels of biomechanical filtering may be evaluated by comparison with neurophysiological measurements. The levels of biomechanical filtering yield a measure of the sensitivity as the ratio of cupular deflections to the sphere’s displacement, calculated as the product of the following transfer functions (each shown in Fig. 4C and Table 1):

\[
\frac{\text{Cupular deflection}}{\text{Sphere displacement}} = \frac{\text{Surface acceleration}}{\text{Sphere displacement}} = \frac{\text{Canal velocity}}{\text{Surface acceleration}}.
\]

The frequency response of this sensitivity estimates the filtering solely by the biomechanics of the canal system [Fig. 4D(ii)]. Comparing this prediction with the measurements of changes in the action potentials in the lateral line nerve of the trunk in trout (Kroese and Schellart, 1992) illustrates a remarkable congruence of neurophysiology and biomechanics (Fig. 4D). The 40 dB dec\(^{-1}\) rise in sensitivity at low frequency demonstrates that cupular deflections are proportional to the acceleration of the sphere [Fig. 4C(ii)]. This is encoded by afferent action potentials permitted by the low-pass filtering of the canal and cupula [Fig. 4C(i)]. A discrepancy between biomechanics and neurobiology occurs at frequencies above maximum sensitivity, where cupular deflections maintain a constant high sensitivity but afferent action potentials attenuate with frequency. This difference may be attributed to the limitations of neurophysiology at these high rates. The time-constant of mechanotransduction across the membrane of the hair cells creates a 300 Hz cut-off frequency (Hudspeth and Corey, 1977; Kroese and van Netten, 1989) and the afferent neurons encounter reduced sensitivity at 250 Hz and an upper limit of 500 Hz due, respectively, to the relative and absolute refractory periods of action potentials. With this exception, it may be concluded that the filtering of the canal neuromasts is dominated by their mechanical properties and that variation in their morphology enables sensitivity to extend over a broad range of frequencies. This dominant role of mechanics suggests that the canal system may be tuned through differences in the morphology of the cupula and the canal.

Sensing sound

The diversity of auditory systems also presents a compelling comparative platform for sensory biomechanical studies. The biomechanics of the hearing apparatus plays a key role as a primary filter of incident sound signals in examples of biological audition from insects to amphibian and mammalian ears. Here, we discuss the biomechanics of three types of auditory systems found in insects. The sensory biomechanical perspective has also been adopted rigorously in studies of amphibian ears and covered by Gridi-Papp and Narins (2009) (also see Purgue and Narins, 2000a, 2000b).

Table 1 Mathematical models of mechanical filtering in the canal neuromasts of fish

<table>
<thead>
<tr>
<th>Transfer function (output/input)</th>
<th>Parameter</th>
<th>Values</th>
<th>Source of model [parameter values]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Surface flow acceleration/</td>
<td>Sphere diameter</td>
<td>3 mm</td>
<td>Stokes (1851), Curtič-Blake and van Netten (2006); Kroese and Schellart (1992)</td>
</tr>
<tr>
<td>Sphere displacement</td>
<td>Distance from sphere center to surface</td>
<td>4 mm</td>
<td>[Kroese and Schellart (1992)]</td>
</tr>
<tr>
<td></td>
<td>Water density</td>
<td>998 kg m(^{-3})</td>
<td></td>
</tr>
<tr>
<td>Surface flow acceleration</td>
<td>Canal fluid viscosity</td>
<td>0.51 Pa s</td>
<td></td>
</tr>
<tr>
<td>Canal flow velocity</td>
<td>Cupula sliding stiffness</td>
<td>0.0325 N m(^{-1})</td>
<td></td>
</tr>
</tbody>
</table>
Johnston’s organs

Many insects use antennal or cercal structures to detect air particle vibrations from near-field sound sources. Vibrations of the antennal structures are detected by mechanosensory Johnston’s organs embedded within the basal segments of the insect’s antenna (Göpfert et al., 1999). Across insects, Johnston’s organs have been implicated in several important functions that depend on the sensing of vibrations. These include detection of airflow (Gewecke and Heinzel, 1980; Heinzel and Gewecke, 1987), flight stabilization (Sane et al., 2007), audition (Robert and Göpfert, 2002; Yorozu et al., 2009), and detection of gravity (Kamikouchi et al., 2009). Here we describe the role of Johnston’s organs in audition in mosquitoes, in which the biomechanics of the antennal function appears “tuned” to ecologically important stimuli.

In the case of antennal sound reception, the main feature of the sound stimulus is the particle velocity. This problem has been studied in some detail in mosquitoes (Göpfert et al., 1999; Göpfert and Robert, 2000, 2001; Jackson and Robert, 2006) and Drosophila (Göpfert and Robert, 2002; Robert and Göpfert, 2002; Lu, 2009), also see Göpfert, this issue. In mosquitoes, the flagella of males’ antennae (Fig. 5A) are naturally tuned to the wing-vibration frequencies of females (Göpfert and Robert, 2000). The vibrations of the antennal flagellum are transduced by the individual units (called scolopidia) of Johnston’s organs into action potentials (Fig. 5B). This method of communication poses a steep physical challenge in mosquitoes due to their small size. Because the female’s wing length is about one-sixth of the wavelength of the sound that they produce, wing vibrations produce very little acoustic power and therefore have a limited broadcast range (Jackson and Robert, 2006). Perhaps as an adaptation, male mosquitoes have evolved exaggerated Johnston’s organs, with numerous (~16,000) sensory neurons that are capable of responding to flagellar-tip displacements of a few nanometers (Göpfert and Robert, 2000). Furthermore, the plumose structure of males’ antennae (Fig. 5A) serves to enhance sensitivity by increasing the total surface area and thereby the drag on the antenna. At the low Reynolds numbers in which it operates, the plumose flagellum acts like a paddle rather than a brush due to low leakiness (Cheer and Koehl, 1987). As a result, the entire flagellum moves as if it were a rigid rod moving about within its pedicellar socket thereby allowing the antennal motion to be transmitted to the basal segments with utmost fidelity. This exquisite nanometer-range sensitivity of the sensory neurons underlying the Johnston’s organ’s ear is coupled with the hair-like projections on the antennal structure, which ensures a forced damped oscillator-like behavior of the antenna in response to sound (Fig. 5B).

Tympanal organs

In addition to antennal or cercal structures, insects from diverse groups have independently evolved auditory tympanal organs that detect pressure waves from distant sources of sound. These ears are typically comprised of a tympanic membrane connected to a scolopidial organ which houses a chordotonal neuron that detects the vibration of the tympanic membrane (Robert et al., 1994). The case of the parasitoid tachinid fly, Ormia ochracea, and its cricket host offer a particularly illustrative insight into the role of sensory biomechanical processes. In this system, both the host and the parasite depend on audition for their survival. The parasitoid fly locates a host cricket by hearing its chirps. Some time after eggs are laid within the cricket, hatched larvae feed on the host cricket’s tissues. Because O. ochracea is small, the two tympanal membranes used in hearing are spaced close together (~1.2 mm) on the ventral prosternum under the neck (Robert, 2001). This means that for the parasitoid fly, both the time difference between the incidence of sound on the two ears (called interaural time difference or ITD, ~1.7 μs) (Robert, 2001) and the interaural intensity difference (IID, <1 dB) (Robert, 2001) are too small for the underlying chordotonal neurons to make a bilateral comparison as a means of localization. Therefore, the small size of this sensory structure challenges the ability to sense the directionality of the sound. Nevertheless, these insects meet the challenge of locating the positions of their cricket host rather well.

The key to how these tiny parasitoid flies detect the direction of sound is within the biomechanics of a flexible, cuticular intertympanic bridge. This structure mechanically couples the two tympanic membranes such that their vibration can now occur in three distinct modes, depending on the frequency of the incident sound wave. At low frequencies (<3 kHz), the tympanic membranes vibrate together in phase and are unable to establish a sufficient difference in the timing of their vibration to enable localization by sound. However, at an intermediate frequency range (between ~5 and 15 kHz), the phase difference between the two tympanic membranes is large enough to inform the fly about the direction of the sound. At frequencies >15 kHz, the binaural
Fig. 5 Antennal and tympanal audition in insects. (A) Mosquito antenna. Area marked by the rectangle indicates the location of Johnston’s organs. (B) Cross-section of the salient feature of Johnston’s organs. The scolopodial units, most of which contain two bipolar neurons, connect to the prongs and convey information about the movement of the flagellum relative to the pedicel to the brain through the antennal nerve. (C) The cricket auditory and airflow-sensing system. (i) The tympanal ear of the cricket. A pressure wave incident upon the outer face of the tympanic membrane (indicated by white arrows) is compared with the wave incident on the inner face (black arrow) via the tracheal tubes. This enables crickets to determine the location of the source of the sound. (ii) Individual filiform hair sensor present on a cricket’s cerci enable crickets to sense ambient air disturbances.
membranes combine the two modes described above such that the contralateral membrane is now effectively silenced and the directionality is determined by the side on which the tympanic membrane is vibrating. Thus, the parasitoid fly is able to biomechanically amplify the binaural ITD and IID and determine from a distance where the singing cricket is located and target it for oviposition (Robert et al., 1992, 1996a, b; 1999; Robert, 2001).

Like her tachinid parasites, the female cricket, Gryllus bimaculatus, must also acoustically determine the location of a singing male (Robert et al., 1992; Fig. 5C). Again, this process involves the biomechanics of sound-sensing structures. Unlike the tachinid flies, the tympanic membrane in crickets is located on their pro-thoracic tibiae, rather than in the prosternum [Fig. 5C(i)]. Sound is conducted to both the outer and inner surfaces of the tympanic membrane from four regions. The outside surface of the membrane receives sound via the external air whereas the inside surface receives it from three other locations via a system of air-filled spiracular tracheal tubes (Fig. 5C). These sound inputs are received at the ipsilateral and contralateral spiracles under the wings on the thorax, and very weakly from the tympanic membrane of the contralateral leg. Thus, the tympanic membranes in crickets act essentially as pressure-difference receivers such that the strains in the tympanic membrane depend on the vector addition of the forces due to sound arriving from these four locations. The ipsilateral and contralateral tracheal tubes are divided by a central membrane, whose mechanics is crucial for enhancing the phase difference between the ipsilateral and contralateral spiracle-conducted sounds (Robert et al., 1994, 1996b; Adamo et al., 1995; Miles et al., 1995; Muller and Robert, 2001).

The study of all the systems described above were primarily enabled by the development of Laser Doppler Vibrometry, which allows researchers to measure fine-scale vibrations as a means of gaining insight into the biomechanical factors involved in hearing by insects.

Biomechanics of non-mechanosensory modalities

Although this review focuses primarily on mechanosensory organs and their interaction with their mechanical environment, sensory biomechanics is by no means restricted to mechanosensors. In the cases of silkworm moths fanning their wings and moths flapping in air, a mechanical modification of the odor is crucial for olfaction. As argued by Loudon and Koehl (2000), the fanning of wings by the silkworm moth, Bombyx mori causes an enhanced and periodic influx of the odor pulses akin to sniffing in higher vertebrates. Measurements of this airflow in Manduca sexta (Sane, 2006; Sane and Jacobson, 2006) and Locusta migratoria (Horsmann et al., 1983) reveal a sharp, near sinusoidal delivery of pulses of air to the mechanosensory cephalic hair, which provides phasic feedback to the motor system for flight. In addition to its function in modulating the sampling frequency and the amplitude of odor delivery, this airflow may be involved in other processes such as convective loss of water and heat (Sane and Jacobson, 2006). In these examples, the study of biomechanics can offer a unique insight into strategies used by animals in enhancing their sensory signals and improving perception.

Technical challenges

As evident from most of the examples above, determining the micro-strains that generate a mechanical signal presents a difficult experimental challenge in the biomechanics of sensory organs. In most cases, the problem involves understanding how the coarsely applied strains or sound stimuli translate into microstrains in the immediate vicinity of a mechanosensory apparatus. Because the deflections of these structures occur at a microscopic or nanometer scale, their direct physical measurements are not always possible. Tools such as single-point or scanning Laser Doppler Vibrometry have proved very powerful in enabling researchers to examine fine-scale motion with exquisite temporal resolution. In the case of the lateral-line system, interferometry has allowed similar insights into the actual motion of the cupulae in response to external flows (Kroese and Van Netten, 1987). In addition, recent application of Particle Image Velocimetry in the near-field around the bodies of fish (Chagnaud et al., 2006, 2008; Coombs et al., 2007) or insects (Bomphrey et al., 2006) also provides promising insights into sensory function. However, the complicated geometry and anisotropic microstructure of sensory organs makes the experimental determination of the biomechanical filter of the sensory stimulus extremely difficult, making this a very fruitful area of collaboration between engineers and sensory neurobiologists in the near future.

In the absence of a method to directly measure micro-strains, several researchers have used numerical approaches to gain insight into the properties of biomechanical filters. These include, most importantly, the Finite Element Analysis of sensory structures (Hössl et al., 2007) to determine the solid mechanical...
contribution to the biomechanical filter, as in the case of spiders’ slit sensilla, Computational Fluid dynamics to determine the fluid mechanical contribution as in the case of near-field flow around a fish’s body (Barbier and Humphrey, 2009; Rapo et al., 2009), or codes involving a combination of the two to deduce the effects of solid-fluid coupling, as in the case of cupular deflection (McHenry et al., 2008).

Funding

Society of Integrative and Comparative Biology (given to the symposium “Sensory Biomechanics” held at Boston meeting in 2009); National Science Foundation and Fastec Inc. (grant provided to the symposium).

Acknowledgements

We wish to acknowledge the Society of Integrative and Comparative Biology for their help and encouragement. We would also like to thank Taruni Roy for the electron microscopic image of the base of Dipteran halteres.

References

Devarakonda R, Barth FG, Humphrey JAC. 1996. Dynamics of arthropod filiform hairs. 4. Hair motion in air and

Stokes GG. 1851. On the effect if the internal friction of fluids on the motion of pendulums. Trans Camb Phil Soc 9:8–106.

